If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+31=200
We move all terms to the left:
x^2+31-(200)=0
We add all the numbers together, and all the variables
x^2-169=0
a = 1; b = 0; c = -169;
Δ = b2-4ac
Δ = 02-4·1·(-169)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-26}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+26}{2*1}=\frac{26}{2} =13 $
| 2+10(9b-5)=-588 | | 5+4h=3h | | 4+2h=4 | | 24+2w=40 | | 1/6x=1/2x+35/6 | | 1/2(4x+8)=6 | | x3=81/400 | | 10=0.625=5x | | 12b=-48 | | 1+z=4 | | 4/72p=2/7 | | 5(3s+5)=205 | | 7x+19+11x-89+120=180 | | 40x=36 | | 3p-4-p=24 | | 2x−(−3)=11 | | w−8=12 | | 4+m+16=40 | | 7x+19+11x-89=120 | | -9(8n+2)=-450 | | m/10+7=10 | | 0.3(k−0.2)=0.6 | | 7/2x-40=-5 | | 7e+16=5e+10 | | -4+7r-5=44 | | 12x-34=110 | | 7x+19+11x-89=60+60+x | | 10-5y=35 | | 3x16=x-14 | | 3x+24=7x+12 | | 8+5x-2x=14 | | (2x^2-3)(4x+1)=0 |